Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The grassland biome is an important sink for atmospheric methane (CH4), a major greenhouse gas. There is considerable uncertainty in the grassland CH4sink capacity due to diverse environmental gradients in which grasslands occur, and many environmental conditions can affect abiotic (e.g., CH4diffusivity into soils) and biotic (e.g., methanotrophy) factors that determine spatial and temporal CH4dynamics. We investigated the relative importance of a soil's gas diffusivity versus net methanotroph activity in 22 field plots in seven sites distributed across the US Great Plains by making approximately biweekly measures during the growing seasons over 3 years. We quantified net methanotroph activity and diffusivity by using an approach combining a gas tracer, chamber headspace measurements, and a mathematical model. At each plot, we also measured environmental characteristics, including water‐filled pore space (WFPS), soil temperature, and inorganic nitrogen contents, and examined the relative importance of these for controlling diffusivity and net methanotroph activity. At most of the plots across the seven sites, CH4uptake rates were consistently greatest when WFPS was intermediate at the plot level. Our results show that variation in net methanotroph activity was more important than diffusivity in explaining temporal variations in net CH4uptake, but the two factors were equally important for driving spatial variation across the seven sites. WFPS was a significant predictor for diffusivity only in plots with sandy soils. WFPS was the most important control on net methanotroph activity, with net methanotroph activity showing a parabolic response to WFPS (concave down), and the shape of this response differed significantly among sites. Moreover, we found that the WFPS level at peak net methanotroph activity was strongly correlated with the mean annual precipitation of the site. These results suggest that the local precipitation regime determines unique sensitivity of CH4uptake rates to soil moisture. Our findings indicate that grassland CH4uptake may be predicted using local soil water conditions. More variable soil moisture, potentially induced through predicted future extremes of rainfall and drought, could reduce grassland CH4sink capacity in the future.more » « less
-
Abstract Phenotypic plasticity of traits is commonly measured in plants to improve understanding of organismal and ecosystem responses to climate change but is far less studied for microbes. Specifically, decomposer fungi are thought to display high levels of phenotypic plasticity and their functions have important implications for ecosystem dynamics. Assessing the phenotypic plasticity of fungal traits may therefore be important for predicting fungal community response to climate change. Here, we assess the phenotypic plasticity of 15 fungal isolates (12 species) from a Southern California grassland. Fungi were incubated on litter at five moisture levels (ranging from 4–50% water holding capacity) and at five temperatures (ranging from 4–36 °C). After incubation, fungal biomass and activities of four extracellular enzymes (cellobiohydrolase (CBH), β-glucosidase (BG), β-xylosidase (BX), and N-acetyl-β-D-glucosaminidase (NAG)) were measured. We used response surface methodology to determine how fungal phenotypic plasticity differs across the moisture-temperature gradient. We hypothesized that fungal biomass and extracellular enzyme activities would vary with moisture and temperature and that the shape of the response surface would vary between fungal isolates. We further hypothesized that more closely related fungi would show more similar response surfaces across the moisture-temperature gradient. In support of our hypotheses, we found that plasticity differed between fungi along the temperature gradient for fungal biomass and for all the extracellular enzyme activities. Plasticity also differed between fungi along the moisture gradient for BG activity. These differences appear to be caused by variation mainly at the moisture and temperature extremes. We also found that more closely related fungi had more similar extracellular enzymes activities at the highest temperature. Altogether, this evidence suggests that with global warming, fungal biodiversity may become increasingly important as functional traits tend to diverge along phylogenetic lines at higher temperatures.more » « less
An official website of the United States government
